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The solution of the heat conduction equation with appropriate boundary and initial conditions makes it 
possible to determine the influence of the latent heat of fusion evolving during polymer crystallization on 
the temperature distribution near the crystallization front. It is shown that the increase in temperature at 
the crystallization front does not exceed a fraction of a degree. 
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I N T R O D U C T I O N  

A special case of heat transport is that in which a substance 
undergoes a phase transformation with emission or 
absorption of heat. The essential feature of such a problem 
is the existence of a moving interphase at which the latent 
heat of fusion is liberated or absorbed. In metals and other 
low molecular substances the interphase at which the 
transformation occurs follows the isotherm of the melting 
point of the substance. The liquid phase could be 
substantially supercooled and the solidified phase over- 
heated. It was determined that the time dependence of the 
position of the interphase is non-linear and is proportional 
to the square root of time. 

There are several different treatments of this important 
mathematical problem of heat conduction during change 
of state. The most important exact solution is that of 
Neumann (see ref. 1) for a semi-infinite region (x>0)  
initially at a constant temperature which is greater than 
the melting point and with the surface (x--0) maintained 
at zero temperature. This solution was subsequently 
generalized for supercooled liquids assuming that the 
liquid in the region x > 0  is initially at the temperature 
below the melting point and, since no heat is removed 
from the solid, the solidified material will thus have a 
constant temperature equal to the melting point. 

A better approximation for solidification of metal cast 
in a mould was introduced by Schwarz 2. He introduced 
a distinction between thermal properties of the melt and 
the solid, the solid is initially at zero temperature while 
the liquid is at a somewhat higher constant temperature. 
The method of solution follows the route of Neumann's 
solution. 

A series of solutions has been presented for the case of 
solidification in the region x > 0 when the liquid is initially 
at its melting point 3. The generation of heat of fusion at 
the interphase was introduced to this formulation of the 
problem by assuming constant heat flux from the solid at 
x = 0. By assuming a power series in time for the position 
of the interphase and a double power series for the 
temperature, exact solutions are found. 

A simple exact solution for the surface of solidification 
moving with constant speed is due to Stefan (see ref. 
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4). It represents a solution of the problem of freezing in 
the region x > 0 in which the liquid is initially at its melting 
point and the surface of solidification moves with constant 
speed. However, since the temperature at x = 0 has to be 
given negative values which increase exponentially with 
time, the solution is of no great physical interest from the 
point of view of the problem of freezing. 

Lightfoot 5 has contributed to solving the problem of 
solidification by elaborating a new method of solution if 
the thermal properties of the liquid and the solid are the 
same. The liberation of heat of fusion is represented by a 
moving source of heat. It is further assumed that the 
temperature at the interphase must always be equal to the 
melting point (see also ref. 3 for further discussion). The 
temperature at any point can be found by adding terms 
representing the effects of this moving source and the initial 
and boundary conditions. 

Since polymer crystallization is controlled by the 
primary nucleation process the growth of crystalline 
aggregates-spherulites occurs in narrow zones on ex- 
panding circles or spheres around nuclei, often called a 
crystallization front. In those zones the latent heat of fusion 
is liberated due to the crystallization and is dissipated 
away from the crystallization front by heat conduction. 
For thin films there may be other heat sinks active, like 
surrounding air or cover glasses, where convection or heat 
conduction takes place. The heat flow away from the 
crystallization front results from the temperature gradient. 
Therefore, it is expected that the temperature at the 
crystallization front becomes higher than the temperature 
of the rest of the sample. 

There is a substantial difference in the crystallization of 
polymers and metals. In contrast to low molecular weight 
substances the crystallization growth rate in polymers is 
usually constant with time. Based on that observation it 
was concluded in the past that the crystallization of 
polymers is not governed by the dissipation of heat of 
fusion. However, it is not necessarily true because 
polymers crystallize usually much below the melting point 
and the formed crystals are far from the equilibrium. 
The temperature at the crystallization front may be well 
below the equilibrium melting point but above the 
temperature of the supercooled liquid phase. Hence, the 
crystallization of polymers is a special case of heat 
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transport and has not yet been considered in detail in the 
solution of the heat conduction problem on solidification. 

Below, the possible temperature increase in the vicinity 
of the crystallization front in polymers is determined. 

SOLIDIFICATION IN POLYMERS 

We assume that the sample is infinite and at time t = 0 
consists of two phases: solid for x < 0 and liquid for x > 0, 
both at temperature T(x,t)=To which is below the 
equilibrium melting point. At t =0  crystallization starts, 
hence the plane separating the two phases initially at x = 0 
begins to move along the x axis with a velocity, G, equal 
to the spherulite growth rate, and the latent heat of fusion, 
L, liberated at the crystallization front delivers an amount 
of heat Q per unit time per unit area of the crystallizing 
front. Such an approach makes it possible to consider the 
problem of heat transport as one-dimensional. Since a 
melt flows towards the crystallization front to compensate 
for the change in volume due to crystallization, convection 
in the melt as the mechanism for heat transport can be 
neglected. It is useful to introduce a system of coordinates 
moving with a velocity equal to the growth rate G. In the 
moving system of coordinates with the origin at the plane 
of phase separation where heat is liberated, the heat 
conduction equations take the following forms (see also 
ref. 6 for the formulation of these equations): 

62T1 6T1 67"1=0 for x>O (la) 
al 6x 2 +G 6x 6t 

(~2T 2 +GrT2 6T2 =0 for x < 0  
a2 fiX ~ 6X 6~- 

(lb) 

where x denotes a distance from the crystallization front, 
al and a2 denote thermal diffusivities of the liquid and 
the crystalline phases, respectively, and: 

Tl(x,t)=T(x,t)-T o for x > 0  (2a) 

T2(x,t)=T(x,t)-T o for x < 0  (2b) 

The functions 7"1 and T2 have to satisfy the following initial 
and boundary conditions: 

Tdx,0)=0 (3a) 

T2(x,0)=0 (3b) 

T l ( ~ , t ) = 0  (3c) 

T2(- ~ ,  t)= 0 (3d) 

The assumptions of the continuity of the temperature 
function and the conservation of heat flux at the phase 
separation boundary result in the subsequent conditions: 

T2(0, t)= Tx(0, t) (4a) 

K 6T1 6r~ 
-- 1 - -  + K 2  = Q  (4b) 

~xx = o t~xx = o 

where K 1 and K 2 denote the coefficients of thermal con- 
ductivity of the liquid and crystalline phases, respectively. 

The differential equations (la) and (lb) are solved with 
the conditions determined by equations (2a), (2b), (3a), 
(3b), (4a) and (4b) by Laplace transformation. After 
Laplace transformation, equations (la) and (lb) assume 
the following forms: 

d2F1 dFl--pFl=O for x > 0  (5a) 
a l dx ~ + G dx 

d2F2 ~ x  2 
a2 d ~ x  2 + G  - p F 2 = 0  for x < 0 (5b) 

where F t(x, p) and F2(x , p) are the Laplace transforms of 
the functions 7"1 and T2, respectively, and p is the 
transformation parameter. The conditions (3a), (3b), (4a) 
and (4b) are now in a form: 

Fl(oo)=0 

F 2 ( - ~ ) = 0  

F,(0)=F2(0) 

K dF1 dF2 
-- 1 - -  + K 2 - -  

dxx = o dxx = o 

g 

(6a) 
(6b) 

(7a) 

(7b) 

The solutions of equations (5a) and (5b) fulfilling 
conditions (6) and (7) are described by the following 
expressions: 

I G-(G2+4alp)°'s 1 2ala2Q exp x (8a) FI(x,p)- pV(p~ 2a I 

2aaa2Q expE-G+(G2 +4a2p)°'5 ] 
F2(x'P)= pV(p~ 2az x (8b) 

where 

V(p) = Kzal[(G 2 + 4azp) °'5 - G] 

+Klaz[(G 2 +4alp) °'s + G] (9) 

Since the amorphous phase is usually a worse heat 
conductor than the crystalline phase by substituting 
a2=al and K2=K ~ the upper limit for the temperature 
increase is set due to the release of heat of fusion during 
crystallization. Denoting the degree of crystallinity of 
spherulites as s, the amount of heat released per unit time 
per unit area of the crystallization front can be expressed 
as follows: 

Q = GL dcs (1 O) 

where d¢ denotes the density of the crystalline phase. 
Therefore, expressions (8a) and (8b) assume the following 

form: 

salGLd c 
FI(X,p)= 

KlP(G 2 +4alp) °'5 

[-G--(G2 +4alp)°'5 1 
xexp 2al x ( l la)  

sa 1GLdc F2(x,p)= Klp(G 2 + 4alp) °'5 

x exp[  - G +  (G2 + 4alp)°'s x 1 
2al 

( l lb) 

Hence, the temperature function in the considered system 
can be described as follows: 

0.5GsdcL 
T(x, t)= To 4 (K ld, cprC) °'s 

x e x p ( - 2 G ) ; i e x p (  x2+GavZ~dV4alv ] vO.S (12) 
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Figure I Time dependence of the temperature increase A T = T(0, t)-- T o 
at the crystallization front for: (a) PEA; (b) iPP. The broken line 
represents the level of the temperature increase at steady-state conditions 

Equation (12) can be expressed in the following form: 

SLac V { 
T(x,t)= To + 2~Z.c~ |exp,,- ~-) 

{ x - G t  \ / x+Gt  \ 7  
x erfc[ - -  267./1 - e r f c [ ~ 5 . ] /  

\ 2 ( a : )  ] \ 2 (a~ t )  JJ 

for x~>O (13a) 

sLd¢ [- / ' -  x -  Gt'x 
T(x, t) = T O + / e r f c / ~ l  

2d,cp L \ 2 ( a x t ) ' ]  

xG'~ f - x + G t V ]  
- exp - - - 1  e r f c / - - 6 ] ] /  

al /I \2(alt) • ]J  

for x~<0 (13b) 

where erfc(z)=2n-°SS[exp(-yZ)dy,  and d, and cp 
denote the density of the amorphous phase and the 
specific heat capacity of the medium, respectively. The 
temperature at the phase boundary (x=0)  is expressed 
in the following form: 

sLd~ d/ Gt°'5"~ 
T(0, t )=  T O + - - e r n  ~.g.5" (14) 

d,cp -\2a£ ] 

where erf(z) = 2n-  o. sS~ exp( - y2)  dy. 
Estimation of the temperature increase at the crystal- 

lization front of polymers was based on poly(ethylene 
adipate) (PEA) and isotactic polypropylene (iPP) which 
are often used for studying the spherulite growth 
rate. The spherulite growth rate 7 G of PEA at 28°C 
is ~ 2 # m m i n  -a, and de, d, and L for PEA are 
1.363gcm -3, 1.221gcm -3 and 29calg  -1, respec- 
tively s-~°. Assuming values of Ka and cp typical for 

polymer melts, 4 x 10- 4 cal cm- ~ s- 1 °C- 1 (refs 11 and 
12) and 0.5calg-~°C -~, respectively, and s = l ,  the 
dependence of the increase in temperature at the 
crystallization front on time (Figure la) can be plotted. 
One can see that after 1 s, 1 min and 1 h of crystallization 
the temperature increase does not exceed ~0.005, 
0.04 and 0.3 K, respectively. The temperature increase 
saturates and assumes quite a high value as time tends 
to infinity. However, in the considered case of PEA 
(broken line in Figure la) achieving the steady-state 
conditions would take >20 years of crystallization. 
Therefore, the steady-state solution of the problem, which 
has a form similar to that presented by Stefan 4, is of no 
practical importance. 

During faster crystallization the same thermal effect is 
achieved in a shorter time since the temperature increase 
at the crystallization front is a function of Gt °'5. This is 
illustrated in Figure lb, where similar plots for iPP are 
shown. (The following values for the heat of fusion, and 
densities of the crystalline and amorphous phases were 
used 8: 50 cal g-  ~, 0.946 g cm- 3 and 0.854 g cm- 3, respec- 
tively. The degree of crystallinity was assumed to be 0.6. 
The value of the growth rate of iPP spherulites used was 
20#mmin-~ which corresponds to a temperature of 
crystallization of 121.5°C.) It should be mentioned, 
however, that the temperature at the crystallization front 
cannot increase greatly because the crystallization is also 
completed in a shorter time. 

The temperature distributions in front of the crystal- 
lization front in PEA after ls ,  l min and l h of 
crystallization are plotted in Figure 2a. One can see that 
there is a gradual decrease in the temperature with 
increasing distance from the crystallization front. The 
range of the temperature rise increases with time. It is 
seen that after a longer time (1 min) of crystallization the 
zone of the temperature rise reaches a long distance from 
the crystallization front (6 mm) which is comparable with 
the size of the sample. The temperature distribution 
behind the crystallization front is very similar to that in 
front of it because the term exp(-xG/a1) in equation 
(12) is close to 1 for the assumed values of G and a 1. 
Figure 2b shows similar plots for the case of iPP. In 
iPP the zone of increased temperature reaches similar 
distances from the crystallization front in similar time 
intervals as in the case of PEA, which is related to similar 
thermal diffusivities of melts of both polymers. However, 
the temperature increase at the crystallization front in 
iPP is approximately one order of magnitude larger 
(although still quite small, around 1K after 10min of 
crystallization) than in the case of PEA which follows 
from faster growth rate, i.e. faster liberation of the latent 
heat of fusion. 

Since the increase of the temperature at the crystalliza- 
tion front is quite slow it may be assumed that within a 
short time interval the growth rate is constant but 
different in different intervals as it follows from the 
temperature dependence of the growth rate. Equation 
(14) for the temperature at the crystallization front may 
now be modified in the following way: 

0.5sLd¢ ~ G(T,-x) 
T(0, tk) = To 4" (Kx%nd,)O. 5 , = 1 

ftt" I G(Tn_ t)2(tk- t)l dt 
x exp -- 4al (tk_t)0. 5 (15) 

n I 
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Figure 2 Temperature increase distribution in front of the crystallization front for: (a) PEA, after 1 s, 1 min and 1 h of crystallization; (b) iPP, after 
1 s, 1 min and 10min of crystallization 

where t . - t . _  1 denotes time intervals and G(T._ 1) is the 
growth rate for the temperature at the nth time interval. 
The equation represents a sum of positive contributions 
to the temperature rise from the subsequent time intervals 
and has continuously increasing character. In view 
of equation (15), any oscillations around a certain 
temperature are excluded. 

In the above considerations a polymer melt flow 
towards the crystallization front resulting from the 
volume change during crystallization was neglected. 
From the mathematical point of view a melt flow means 
faster motion of the crystallization front with respect to 
a melt. Since the melt flow velocity does not exceed 
several per cent of the spherulite growth rate for most 
polymers, one should not expect any significant influence 
of a melt flow on a temperature distribution. However, 
the influx of a colder melt results in additional consump- 
tion of heat liberated during crystallization, therefore it 
can only cause a lowering of a temperature increase near 
the crystallization front. 

DISCUSSION 

In the above calculations, a constant crystalline phase 
growth rate was assumed, which in turn gave the con- 
tinuously increasing temperature at the crystallization 
front and the surroundings. For an infinite time of 
crystallization the temperature rise may reach 50 to 60°C. 
The highest temperature increase above the initial 
temperature of the sample is found at the interphase. 
However, for most polymers the temperature increase is 
only a fraction of a degree in a reasonable time-scale 

(minutes or hours). Our estimation of the thermal effect 
due to crystallization was based on the assumption that 
there is no heat loss through cover glasses in the case of 
crystallization of thin films or through sample surfaces 
in the case of crystallization in bulk, that there is no 
convection in the melt and that the thermal properties 
of the crystalline phase are the same as those of the melt. 
Therefore, we have set the upper limit for the temperature 
increase due to crystallization. 

An explanation for the crystallization of PEA in the 
form of banded spherulites is proposed in a paper by 
Foks 13. The author concludes that the banding results 
from crystallization of polymer in alternating optically 
positive and negative zones due to the temperature in 
the vicinity of the crystallizing front and growth rate 
oscillations. Foks assumed that the oscillations of the 
temperature and the growth rate leading to the formation 
of banded spherulites occur during crystallization around 
the temperature of the maximum growth rate. The 
changes of the temperature are supposed to be caused 
by the liberation of the latent heat of fusion due 
to crystallization with the feedback on the change of 
the growth rate due to the temperature change. The 
hypothesis should be rejected on the basis of the 
conclusion of a continuous increase in the temperature 
at the crystallization front due to positive contributions 
to the temperature rise from subsequent time intervals. 
Also, since the temperatures at which optically negative 
and positive zones are observed during crystallization 
differ by at least 10K for PEA, the necessary temperature 
oscillations should be of the order of at least several 
degrees. The presented results do not indicate the 
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possibility of a significant temperature  change dur ing the 
crystallization of  PE A or other  polymers.  The order  of  
magni tude  of  the calculated effect excludes the possibility 
of  a temperature  increase followed by a change in the 
growth rate and leading to oscillations in bo th  values. 
In  addit ion,  the hypothesis  of  the origin of  banding  in 
spherulites by temperature  oscillation at the interphase 
should be rejected in view of  the growth rate data  
for fract ionated PE A by Takayanag i  and Yamashi ta  14. 
In the temperature  range where banded spherulites are 
observed in PEA,  the growth  rate remains constant  with 
time th roughou t  the entire growth  process at a given 
crystallization temperature.  The growth  rate decreases 
with the temperature  increase and no max imum is found 
within the temperature  range where banded spherulites 
are observed. 
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